Package 'WeightedEnsemble'

Title: Weighted Ensemble for Hybrid Model
Description: The weighted ensemble method is a valuable approach for combining forecasts. This algorithm employs several optimization techniques to generate optimized weights. This package has been developed using algorithm of Armstrong (1989) <doi:10.1016/0024-6301(90)90317-W>.
Authors: Dr. Ranjit Kumar Paul [aut], Dr. Md Yeasin [aut, cre]
Maintainer: Dr. Md Yeasin <[email protected]>
License: GPL-3
Version: 0.1.0
Built: 2025-02-18 03:39:58 UTC
Source: https://github.com/cran/WeightedEnsemble

Help Index


Weighted Ensemble for Hybrid Model

Description

Weighted Ensemble for Hybrid Model

Usage

WeightedEnsemble(df, Method = "PSO", test_data = NULL, forecast = NULL)

Arguments

df

Data set (training result) with first column as observed value

Method

Method of optimization

test_data

Test result

forecast

Forecast result

Value

  • Weights: Optimized weight

  • Optimized_Result: Optimized result

References

J. S. Armstrong. Combining forecasts: The end of the beginning or the beginning of the end? International Journal of Forecasting, 5(4):585–588, 1989.

Examples

y1<-rnorm(100,mean=100,sd=50)
y2<- rnorm(100,mean=100,sd=50)
y3<- rnorm(100,mean=100,sd=50)
y4<-rnorm(100,mean=100,sd=50)
y<-rnorm(100,mean=100,sd=50)
data<-cbind(y,y1,y2,y3,y4)
OptiSemble<-WeightedEnsemble(df=data)