Package: WaveletKNN 0.1.0

WaveletKNN: Wavelet Based K-Nearest Neighbor Model

The employment of the Wavelet decomposition technique proves to be highly advantageous in the modelling of noisy time series data. Wavelet decomposition technique using the "haar" algorithm has been incorporated to formulate a hybrid Wavelet KNN (K-Nearest Neighbour) model for time series forecasting, as proposed by Anjoy and Paul (2017) <doi:10.1007/s00521-017-3289-9>.

Authors:Dr. Ranjit Kumar Paul [aut], Dr. Md Yeasin [aut, cre]

WaveletKNN_0.1.0.tar.gz
WaveletKNN_0.1.0.zip(r-4.5)WaveletKNN_0.1.0.zip(r-4.4)WaveletKNN_0.1.0.zip(r-4.3)
WaveletKNN_0.1.0.tgz(r-4.4-any)WaveletKNN_0.1.0.tgz(r-4.3-any)
WaveletKNN_0.1.0.tar.gz(r-4.5-noble)WaveletKNN_0.1.0.tar.gz(r-4.4-noble)
WaveletKNN_0.1.0.tgz(r-4.4-emscripten)WaveletKNN_0.1.0.tgz(r-4.3-emscripten)
WaveletKNN.pdf |WaveletKNN.html
WaveletKNN/json (API)

# Install 'WaveletKNN' in R:
install.packages('WaveletKNN', repos = c('https://yeasinstat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 112 downloads 1 exports 91 dependencies

Last updated 2 years agofrom:713da2de2a. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 27 2024
R-4.5-winOKOct 27 2024
R-4.5-linuxOKOct 27 2024
R-4.4-winOKOct 27 2024
R-4.4-macOKOct 27 2024
R-4.3-winOKOct 27 2024
R-4.3-macOKOct 27 2024

Exports:WaveletKNN

Dependencies:caretcaretForecastclasscliclockcodetoolscolorspacecpp11curldata.tablediagramdigestdplyre1071fansifarverforeachforecastfracdifffuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalifecyclelistenvlmtestlubridatemagrittrMASSMatrixMetricsmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrquadprogquantmodR6RColorBrewerRcppRcppArmadillorecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetseriesTTRtzdburcautf8vctrsviridisLitewaveletswithrxtszoo